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SECURITY CLASSIPICATION O ThIS PAG

Abstract. Let z be an eigenvector of the adjacency matrix A of a zonnected

graph G. Say a vertix is positive, nonnegative, zero, etc. if the same is true of

the corresponding element of z. If z is an eigenvector for the second largest

eigenvalue'of A, it is known that the nonnegative vertices of G form a connected

-subgraph. This separation of vertices according to sign provides the basis for

stutling the strutture of G as revealed by its eigenvectors, inequalities

on the number of edges joining positive and negative vertices, bounds on the

number of zero vertices, bounds on multiplicities and some description of the

variability of the elements of z.

The rows of an eigenmatrix provide a mapping of the vertices of G into

m-dimensional euclidean space. Some graphs thus Odraw themselves4. This

phenomenon is especially interesting if the graph is the skeleton of a polytope.
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graph G. Say a vertix is positive, nonnegative, zero, etc. if the same is true of

the corresponding element of z. If z is an eigenvector for the second largest

eigenvalue of A, it is known that the nonnegative vertices of G form a connected

subgraph. This separation of vertices according to sign provides the basis for

studying the structure of G as revealed by its eigenvectors, inequalities

on the number of edges joining positive and negative vertices, bounds on the

number of zero vertices, bounds on multiplicities and some description of the

variability of the elements of z.
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1. Structure of a matrix according to an eigenvector.

Let A be a nonnegative symmetric irreducible n x n matrix with eigenvalues

X1(A) > X,2(A) > ... > ,n(A). If z is an eigenvector corresponding to any

eigenvalue a other than X1. then z has both positive and negative elements.

Let rows and columns of A be permuted so that

x[ Ap APN ApO
Z = y A = NP AN A (1.1)

0AOP AON A0 1
are partitioned conformally, x > 0, y > 0.

Fiedler (1975) proved the following.

Theorem. If z is an eigenvector corresponding to eigenvalue = ,i(A),

i > 1, then each of the submatrices

A1 = AP APO ,A 2  N A=No (1.2)
A OP AO 0 ON AO0J

is permutationally similar to a block diagonal matrix having at most i - 1

irreducible blocks.

In order to restate this theorem in terms of graphs, define the graph of

a nonnegative symmetric n x n matrix Atobegr (A) having vertices V = {1 . . n}

with i adjacent to j if and only if a > 0 and i t j. Then Fiedler's theorem

states that each of the graphs gr (A1), gr (A2) has at most i - 1 connected

components. In particular, if i = 2 each is a connected graph.

In Eq. (1.1), the last block row and column may be absent (if z has no

zero elements). If they are present, then it is enteresting to know their

importance to Fiedler's result.

Theorem (Powers 1986) Let Az = az, z and A as in Eq. (1.1), z having some

zero elements. Set

B AP APN (1.3)
ANP AN j
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If mult (a) = > 1, assume that the elements of z shown equal to 0 in Eq. (1.1)

are 0 in every eigenvector of A corresponding to a. If a = X2, exactly one

of the following two cases holds.

(1) APN = 0, a= X1(Ap) = xl(AN) and gr (B) has 1 + i components.

(2) APN 0 0, a < X1(Ap), Xl(AN) and each of the graphs gr (B), gr (Ap),

gr (AN) is connected.

The theorem above can be generalized to the case of eigenvalues after

X2' as follows:

Theorem. Under the hypotheses of Theorem 1, if ( = Xi < Xi-l' exactly

one of the following two cases holds

(1) APN = 0, X = xl(Ap) = Xl(AN) and the number k of components in

gr (B) satisfies

mult (a) + 1 < k < mult (a) + i - 1.

(2) APN t 0, a< AI(Ap), XI(AN). The number k of components in gr (B)

satisfies

k < mult (a) + i - 1.

2. Cutsize inequalities

The (reordering and) partitioning of a matrix according to the signs of

the entries of a given vector, used above, turns out to be a fruitful idea.

Suppose G is a connected graph on n vertices, and its vertex set is partitioned

into

V1  {1, ... , m }, V2 = {m + 1, ..., m + p}.

Let A, the adjacency matrix of G, be partitioned similarly

A=[ C (2.1)

[C
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and define the vectors

r l v IlL-/CJw- - Le I

where e = [1, 1, ... , 1)'. Then z'z = w'w = 1, w-z = 0. From the extremal
properties of XI(A) and Xn(A) it is easy to show that

2

X1(A) - Xn(A) > -L e'Ce. (2.2)

But e'Ce is the number of edges of G with one end in V1 and the other in V2.

i.e., the cutsize for this partition. Thus the difference between largest

and smallest eigenvalues of A gives a bound on cutize.

Now suppose that Az = az, a any negative eigenvalue, and

z = [x]y A= [. C] (2.3)

where x > 0, y > 0. Then manipulation of the equation Az - z in partitioned

form leads to the inequality

12 < x'CC'x 'Clo < min{---r-,-

Hence one obtains the inequalities

lal2 < Xl(C'C) < tr(C'C) = e'Ce, (2.4)

using the fact that C'C is nonnegative definite and C is a matrix of O's and

l's.

Aspvall and Gilbert (1984) recently proposed using the partition of a

graph as given in (2.3), using a = Xn(A), to obtain an approximate 2-coloring.

Combining (2.2) and (2.4) we get the bounds

X2  < e'Ce < (X -Xn) (2.5)

on the cutsize for this partition. These are superior to bounds obtained

in the reference cited. Furthermore, the bounds (2.5) are simultaneously

achieved if G is the complete bipartic graph K(m,p): xI = "L =

' , . ,, , . . • ,',, ,, ,.,., ..- , ,, +, ",...- " " , . .. ,..',xX .. .. F P
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3. Multiplicities

The investigation in 1 above lead to the question: how many elements

of an eigenvector can be 0? If A is the adjacency matrix of a graph on n

vertices, and Az = cLz, let

W= # { i: zi =0 }.

Consideration of the rows of the matrix equation Az = cz leads to the

inequalities

w < n - 2 - 2a , if 0 < a < X2(A), (3.1)

w< n - 2 1Ic , if C < O. (3.2)

Next, suppose that is an eigenvalue with multiplicity m, and set

= # { i: zi = 0 if Az = czI

A linear combination of eigenvectors corresponding to a can be forced to

have w = m - 1 + 2 zero elements. In combination with (3.1) and (3.2) this

fact yields

m + Q + 21(X < 2 (3.3)
n+ 1, cX<0

Taking the extreme case 2= 0 in (3.3) produces the surprising inequality
ni -i" 2a , 0 < a < X2 (A)

m = mult (n) < - - (3.4)
- + 1 + 2a , a < 0

Again taking the extreme case m = 1 in (3.4) produces two universal

bounds

X2 (A) < - 1, (3.5)

n (A) >_- n (3.6)

The second is achieved for G = K(1 , 1) and the first is approached asymptotically

as n increases. Apparently, these inequalities are of some use in the theory

of optimal block designs (Jacroux, 1980).
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4. Magnitudes of elements in an eigenvector.

For an adjacency matrix A, let Az = cxz, 0 < a < X2(A). By considering

the rows of the matrix equality Az = cz and separating the positive and negative

elements of z, it is easy to prove

max zi - min zi  1< 1(4.1)
ZziI - + 1

If z= with x >0, y >0, then (4.1) can be restated as

< (4.2)
-FT71 + IY T1 - L + i

and in fact it is true that

_ .XII. < 1. < (4.3)

llXII1 - L +_ ' lyl I I - 0 + I

In all these inequalities the left-hand side provides a measure of the variability

of the elements of the vector.

By similar means one can establish a double inequality for the variability

of the elements of the positive eigenvector z corresponding to a = XI(A):

max zi.
L < (4.4)

2q- Z zi  - a+1"

The parameter q on the left is the number of edges in the graph.

Experiments with randomly chosen graphs of orders 10 to 20 indicated that

the inequality (4.1) is often an equality.

.Z4
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5. Eigenvector geometry

Let A be the adjacency matrix of a connected graph G on n vertices. Let

cx be an eigenvalue of multiplicity m > 2 and Z an n x m matrix of orthonormal

eigenvectors. All such Z's can be obtained from any one by forming products

ZQ, where Q is an m x m orthogonal matrix.

There is an obvious mapping 0 from vertices of G to the set C = eT Zi
(where ei is the ith column of I), interpreted as a set of points in m-dimensional

Euclidean space. If 0 is 1 to 1, we say that G is m-autographic for a, for

the following reason. Draw a line segment between points of C if and only if

an edge joins corresponding vertices of G . The result is a structure that

realizes G in m-dimensional space. Graphs that are 2- or 3-autographic for some

eigenvalue a are particularly interesting, since they "draw themselves" in an

easily visualized way.

As a basis for establishing sufficient conditions for the m-autographic

property, we have two theorems.

Theorem. (Godsil 1978) Let G be a connected graph, and let the distinct

eigenvalues of its adjacency matrix have multiplicities m1 , ..., mk. Then

the automorphism group of G is contained in the direct sum of the orthogonal

groups of degrees m1, ... , mk.

Theorem. (Godsil 1978, Powers 1981). For fixed a and z, let B1, ..., Bs

be the preimages under p of the points of C. Then B1, ..., Bs are blocks

of the automorphism group of G.

From the first theorem, one can see that if the automorphism group contains

say A4 or S4, then some eigenvalue has multiplicity 3 or greater. The second

theorem shows, e.g., for the graph of the cube that there are 1, 2, 4, or 8

blocks.
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If the convex hull of C is a polytope whose skeleton is G , we say that

the r-,lytope (and the graph) have the self-reproducing property. We have found

many examples including the platonic solids, the 24-cell, and all the regular

polytopes of dimension 5 or more. There are also many nonregular polytopes

having the self-reproducing property. For example, if we truncate the corners

of a cube, or truncate four corners, each across a face diagonal from the others,

or erect a pyramid on each face, the resulting polytope has the property. Note

that in all these cases, the polytope remains an automorphism group that contains

S4 '

We are presently attempting to characterized graphs with the autographic

and self-reproducing properties.

4
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